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1|Introduction    

Data Envelopment Analysis (DEA) is a non-parametric technique introduced by Charnes et al. [1] for 

evaluating the relative efficiency of Decision-Making Units (DMUs). This approach, based on linear 

programming, is designed to assess the performance of units that consume multiple inputs to produce 

multiple outputs. In DEA, efficiency is defined as the ratio of the weighted sum of outputs to the weighted 

sum of inputs, with the maximum efficiency score normalized to 1. A DMU is considered efficient if it lies 

on the efficiency frontier; otherwise, it is classified as inefficient [2–4]. 

DEA models evaluate each DMU individually under the most favorable conditions by assigning it the optimal 

set of weights. While this allows each DMU to achieve its highest possible efficiency score, it leads to difficulty 
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Abstract 

In this paper, a novel approach is proposed for determining a Common Set of Weights (CSW) through multi-objective 

programming within the framework of Data Envelopment Analysis (DEA). In DEA, each Decision Making Unit 

(DMU) is evaluated under the most favorable conditions by selecting weights that maximize its own efficiency. To 

ensure a fair and unified assessment across all DMUs, a model is developed to identify a CSW. The proposed model 

involves fractional objective functions, which are subsequently transformed into an equivalent Multi-Objective Linear 

Programming (MOLP) problem. To solve the MOLP, we employ either the Multi-criterion Simplex Method (MSM) 

or the Weighted Sum Method (WSM). Finally, the derived CSW is used to assess and rank the efficient DMUs in a 
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  in making fair comparisons among all units. Therefore, identifying a Common Set of Weights (CSW) is crucial, 

as it provides a unified benchmark to evaluate and rank all DMUs under consistent conditions [5]. 

To address this, researchers such as Jahanshahloo et al. [6], [7] have proposed methods for finding common 

weights in DEA. In the present study, we transform a Multi-Objective Fractional Programming (MOFP) 

problem into a Multi-Objective Linear Programming (MOLP) problem. The transformed model is then 

solved using two distinct approaches: The Multi-criterion Simplex Method (MSM) and the Weighted Sum 

Method (WSM). These techniques facilitate the determination of a CSW in an efficient and structured manner. 

Evaluating the efficiency of similar operational units is critical for maintaining competitiveness and ensuring 

continuous improvement. Institutions such as bank branches, schools, hospitals, power plants, and factories 

can benefit from DEA to identify their current performance levels and develop strategies for improvement. 

Awareness of current efficiency serves as the first step toward enhanced productivity and more informed 

managerial decisions [8], [9]. 

The structure of the paper is as follows: 

In Section 2, we introduce the concepts of MOLP and Fractional Multiobjective Linear Programming 

(FMOLP), and discuss the Multicriterion Simplex Method (MSM) in detail. Section 3 presents both the 

fractional and multiplier models of DEA. In Section 4, a new model is proposed for determining a CSW. To 

solve this model, we employ two approaches: The MSM and the WSM. Section 5 is devoted to ranking the 

efficient Decision Making Units (DMUs) based on the obtained CSW. A numerical example is provided in 

Section 6 to illustrate the methodology. In Section 7, a real-world application involving 20 bank branches is 

examined. Finally, Section 8 concludes the paper with a summary of the main results. 

2|Multi-Objective Linear Programming  

 We consider the following MOLP problem: 

where fi(x) = cix for i = 1, … , k are the objective functions, A ∈ Rm×n is the constraint matrix, b ∈ Rm is the 

right hand side vector and x ∈ Rn is a vector of variables. We shall denote the feasible set of the MOLP by X. 

In the following we assume, without loss of generality, that X is non empty. The objective function can be 

written as CTx , where C ∈ Rn×k has columns ci. A solution x∗ ∈ X of MOLP is (Weakly) Pareto optimal if 

there is no x ∈ X such that CTx ≥ CTx∗ and CTx ≠ CTx∗. If x∗ is (Weakly) Pareto optimal, CTx∗. is called 

(Weakly) efficient. 

A fundamental result of multiobjective linear programming states that (Weakly) Pareto optimal solutions of 

MOLP can be characterized as optimal solutions of single objective linear programs with a convex 

combination of objectives ci i = 1, … , k. Let Λ = {λ ∈ Rk:  λ ≥ 0, ∑k
i=1 λj = 1} and Λ0 = {λ ∈ Rk:  λ > 0,

∑k
i=1 λj = 1}. We will refer to Λ respectively Λ0 as parameter space or weight space. 

Theorem 1. A feasible point x ∈ X is (Weakly) Pareto optimal for MOLP if and only if there exists λ ∈ Λ0 

(λ ∈ Λ) such that x is an optimal solution of 

A proof of this result can be found in [10]. 

(MOLP) max  (f1(x), f2(x), . . . , fk(x)),                           

s. t.    Ax = b,
    x ≥ 0,

 (1) 

(P(λ))  max  c(λ)Tx, = ∑

k

i=1

λi(ci)T(x),                                

s. t,    Ax = b,
x ≥ 0.

 (2) 
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There exist other method for solving the MOLP, one of which is discussed in below.  

2.1|Multicriterion Simplex Method   

The MSM is an extension of the classical simplex method used to solve Multiple Objective Linear 

Programming (MOLP) problems. Instead of optimizing a single objective function, MSM handles k objective 

functions simultaneously. The method constructs a simplex tableau that incorporates not only the constraint 

equations but also additional rows corresponding to each objective. These rows include the reduced costs for 

each non-basic variable with respect to each criterion. The aim is to identify solutions that are efficient (Pareto 

optimal), meaning no other feasible solution improves one objective without worsening at least one other. 

In the MSM tableau, the top section contains the basic and non-basic variables, and the body includes the 

constraint coefficients and the current values of the basic variables. Below the constraint rows, there are k 

criterion rows, each representing one of the objectives. These rows show how changing a non-basic variable 

would affect each objective function. By analyzing the reduced costs in each criterion row, the decision-maker 

can determine potential entering variables and navigate toward a set of trade-off (Efficient) solutions. 

The general form of MSM table to solve model MOLP in [1] is introduced as follow: 

Table 1. MSM tableau structure for solving 

multicriteria optimization problems. 

  

  

  

  

 

  

  

  

 

where: 

I. yᵢⱼ: Coefficients in constraint rows. 

II. zₖⱼ: Reduced costs for objective k. 

III. cᵏ·x⁰: Current value of the k-th objective function. 

All variable, including the slacks, are divided into two groups: m basic variables x1 … xm that are currently 

forming a solution, and (n-m) nonbasic variables xm+1 … xn whose value are, by definition, equal to zero. Since 

there are constraints and n variables, only m variables can be positive, while the remaining (n-m) variables are 

zero. We do not count the nonnegative condition as constraints, because they are automatically satisfied 

through the appropriate simplex method manipulations. A solution consisting of m basic and (n-m) nonbasic, 

zero-valued variables is referred to as a basic solution. The set basic variables x1 … xm is often referred to as a 

basis. Basic solutions will generally be identified by superscripts, that is, x1, x2, and so on, usually indicting the 

order in which the were generated. Observe that each nonbasic variable in Table 1 has the following associated 

column vector in the criteria row portion of the tableau: zj = (z1j, … , zkj)
t. 

Also, with each basic solution (And its tableau) say, xo there is associated a corresponding column vector of 

current values of the objective functions: Cxo = (c1xo, … , ckxo)t. Note that this vector Cxo is also maintained 

and updated automatically by the performance of correct row operations on the individual tableaus. For any 

nonbasic variable xj, such that yrj > 0 for at least one r = 1, … , m, we define αj = Minr  
xr

o

yrj
. Thus αj is the 

minimum of the ratios formed for the jth column; the corresponding minimum row r then determines which 

of the basic variables xr is going to leave the basis. Then, 

Basic Vars x₁ ... xₘ xₘ₊₁ ... xⱼ ... xₙ RHS (xᵢ⁰) 

x₁ 1 ... 0 y₁ₘ₊₁ ... y₁ⱼ ... y₁ₙ x₁⁰ 

...          

xₘ 0 ... 1 yₘₘ₊₁ ... yₘⱼ ... yₘₙ xₘ⁰ 

z₁ (Obj 1) 0 ... 0 z₁ₘ₊₁ ... z₁ⱼ ... z₁ₙ c¹·x⁰ 

...          

z_k (Obj k) 0 ... 0 z_kₘ₊₁ ... z_kⱼ ... z_kₙ cᵏ·x⁰ 
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  I. If there is a zj consisting of only nonpositive components, not all of which are zero, then xo must be 

dominated. 

II. If there is a zj consisting of only nonnegative components, not all of which are zero, then introducing xj in 

to the basis would result in a dominated solution. 

III. Consider two nonbasic variable xj, xk. If all the components of θjzj are smaller or equal to the components 

of αkzk with at least one αjzij < αkzik, r = 1, … , k, then the solution resulting from introducing xk would be 

dominated by the solution which would result from introducing xj. 

2.2|Fractional Objective Functions  

In many problem of a practical nature, especially in financial planning, one is often concerned about objective 

function which are defined as ratios, quotas, or fractions. This bring an aspect of nonlinearity into the analysis. 

For example, a ratio of two functions say, h(x) profits to g(x) sales, 
h(x)

g(x)
 is a nonlinear function even though 

both h(x) and g(x) could be linear. Hosseinzadeh Lotfi [6] developed such a test through linearization of 

fractional functions by taking their derivatives. 

If we could replace fractional function fi(x) sby some linear function ti(x) so that the nondominance-

dominance relationships among the points of X would be preserved, then we could use MSM for testing the 

nondominance in fractional linear programming as well. Suppose that in Model (2), fi(x) =
hi(x)

gi(x)
 where h(x) 

and g(x) are linear functions. Therefore, we have a multiobjective fractional programming problem. The 

derivative of  fi(x) around point x̅ is as follows:   

herefore we can convert models which have fractional function to linear function by derivation around a 

point. 

3|Data Envelopment Analysis 

Consider n DMUs with m inputs and s outputs. The input and output vectors of DMUj (j = 1, … , n) Xj =

(x1j, … , xmj)
t, Yj = (y1j, … , ysj)

t where Xj ≥ 0, Xj ≠ 0, and Yj ≥ 0, Yj ≠ 0. 

Suppose input and output weights are vi(i = 1, … , m),  ur(r = 1, … , s), respectively. We also assume that the 

input and output components are nonegative. The efficiency of DMUp is obtained by solving the following 

ratio programming problem:  

where ϵ is positive non-Archimedean infinitesimal. The first set of constraints are for limiting the evaluating 

scale. The above mentioned problem is solved separatly for each DMU, and by solving this problem different 

set of weight are obtained. Instead of solving Problem (5) the following linear programming problem is solved:  

ti(x) =
∇hi(x̅)gi(x̅) − ∇gi(x̅)hi(x̅)

[gi(x̅)]2
(x − x̅).  

max    
∑s

r=1 uryrp

∑m
i=1 vixip

,

    s. t.    
∑s

r=1 uryrj

∑m
i=1 vixij

≤ 1,    j = 1, ⋯ , n,

    ur ≥ ε,    vi ≥ ε,    r = 1, … , s,    i = 1, … , m.

 (3) 
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This model is called CCR input orientation multiplier side problem. 

4|Common Set of Weights  

 In DEA calculating the efficiency of different DMUs, different set of weights are obtained, which seems to 

be unacceptable in reality. So the following model is used to find CSW which has same advantages that will 

be discussed later on. Consider the following problem: 

The above problem is a fractional programming problem with multiple objectives, in which each objective 

function has goal equal to 1. As no priority is considered for the objective functions. 

By manipulating Model (5) and adding the normalizing constraint ∑s
r=1 ur + ∑m

i=1 vi = 1, we have: 

By using the fractional function approximation in (u1, … , us, v1, … , vm) = (u̅1, … , u̅s, v̅1, … , v̅m), Model (6) is 

converted into an MOLP as follows:  

max    ∑

s

r=1

uryrp0.15cm,

    s. t.    ∑

m

i=1

vixip = 1,

    ∑

s

r=1

uryrj − ∑

m

i=1

vixij ≤ 0,    j = 1, ⋯ , n,

    ur ≥ ε,    vi ≥ ε,    r = 1, … , s,    i = 1, … , m.

 (4) 

max    {
∑s

r=1 uryrj

∑m
i=1 vixij

,   j = 1, … , n} ,

    s. t.    
∑s

r=1 uryrj

∑m
i=1 vixij

≤ 1,    j = 1, ⋯ , n,

    ur ≥ ε,    vi ≥ ε,    r = 1, … , s,   i = 1, … , m.

 (5) 

max    {
∑s

r=1 uryrj

∑m
i=1 vixij

,    j = 1, … , n} ,

    s. t.    ∑

s

r=1

uryrj − ∑

m

i=1

vixij ≤ 0,    j = 1, ⋯ , n,

    ∑

s

r=1

ur + ∑

m

i=1

vi = 1,

    ur ≥ ε,    vi ≥ ε,    r = 1, … , s,    i = 1, … , m.

 (6) 

max    {(∑

s

r=1

uryrj) (∑

m

i=1

v̅ixij) − (∑

m

i=1

vixij) (∑

s

r=1

u̅ryrj) ,   j = 1, … , n},

    s. t.    ∑

s

r=1

uryrj − ∑

m

i=1

vixij ≤ 0,    j = 1, ⋯ , n,

    ∑

s

r=1

ur + ∑

m

i=1

vi = 1,

    ur ≥ ε,    vi ≥ ε,    r = 1, … , s,    i = 1, … , m.

 (7) 
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5|Complete Ranking of Decision-Making Units Using Common 

Set of Weights  

In this section, we introduce a method for ranking of DMU using CSW. consider the Problem (18), suppose 

that E = {j: DMUj is efficient in the Model (18)}. 

To rank efficient DMUs, we omit the corresponding constraints of all efficient DMUs, and then evaluate 

efficient DMUs by following model: 

By using the fractional function approximation in (u1, … , us, v1, … , vm) = (u̅1, … , u̅s, v̅1, … , v̅m), Model (9) is 

converted into an MOLP as follows:  

Therefore we can use objective function values for ranking efficient units. 

6|Numerical Example  

We consider four DMUs with one input and one output in Table 2 as follows: 

Table 2. The data of the four DMUs.  

 

 

In Table 2, we examine a simplified DEA scenario involving four DMUs, each characterized by a single input 

and a single output. This structure enables a straightforward assessment of efficiency, where the performance 

of each DMU can be visualized and compared directly using input-output ratios. The input and output data 

are as follows: DMU₁ consumes 1 unit of input to produce 1 unit of output, DMU₂ uses 2 inputs to produce 

5 outputs, DMU₃ utilizes 4 inputs for 6 outputs, and DMU₄ employs 3 inputs to yield 2 outputs. 

To evaluate efficiency in this context, we calculate the output-to-input ratio (i.e., output divided by input) for 

each DMU. These ratios are: DMU1 = 1, DMU2 = 2.5, DMU3 = 1.5, and DMU4 ≈ 0.67. Based on these 

results, DMU2 demonstrates the highest efficiency, as it produces the greatest amount of output per unit of 

input. DMU1 also shows relatively good performance with a ratio of 1.0, while DMU4 is the least efficient 

among the four units. These findings suggest that DMU2 lies on the efficiency frontier, potentially serving as 

a benchmark for other units. 

From a DEA perspective, DMUs with higher efficiency scores are considered more productive, as they utilize 

fewer resources to generate more outputs. The presence of DMUs with varying efficiency levels highlights 

max  {
∑s

r=1 uryrj

∑m
i=1 vixij

,    j ∈ E}0.15cm,

    s. t.    
∑s

r=1 uryrj

∑m
i=1 vixij

≤ 1,    j = 1, ⋯ , n, j ≠ p,

    ur ≥ ε,    vi ≥ ε,    r = 1, … , s,    i = 1, … , m.

 (8) 

max    {∑

j∈A

[(∑

s

r=1

uryrj)(∑

m

i=1

v̅ixij) − (∑

m

i=1

vixij)(∑

s

r=1

u̅ryrj)]}0.15cm,

    s. t.    ∑

s

r=1

uryrj − ∑

m

i=1

vixij ≤ 0,    j = 1, ⋯ , n, j ≠ p,

    ∑

s

r=1

ur + ∑

m

i=1

vi = 1,

    ur ≥ ε,    vi ≥ ε,    r = 1, … , s,   i = 1, … , m.

 (9) 

   𝐃𝐌𝐔𝟏  𝐃𝐌𝐔𝟐  𝐃𝐌𝐔𝟑  𝐃𝐌𝐔𝟒  
Inputs 1 2 4  3  
Outputs 1 5 6  2 
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the need for comparative evaluation methods such as DEA. This example also illustrates the importance of 

identifying efficient frontiers and setting realistic performance targets. In further analysis, DEA models can 

be employed to assign appropriate weights to inputs and outputs, assess relative efficiency under multiple 

conditions, and guide managerial improvements across less efficient DMUs. 

The proposed Model (6) for the data in Table 2 is summarized as follows: 

Model (8) corresponding to the data in Table 2 is as follows: 

The optimal tableau of the MSM is as follows: 

Table 3. The optimal table corresponding to the MSM.  

 

 

 

 

 

 

 

 

 
 

Pareto optimal solution is of MSM which (u, v) = (
2

7
,

5

7
) are CSW for evaluating DMUs. 

7|An Application and Discussion  

Evaluating the performance of bank branches is a complex task due to the multifaceted nature of banking 

services and the diversity of resources consumed and outputs delivered. DEA is a powerful tool for addressing 

this challenge, as it can accommodate multiple inputs and outputs simultaneously without requiring prior 

assumptions about their relationships. Table 4 presents the input and output structure used to assess the 

efficiency of 20 bank branches, providing a rich dataset for comparative analysis. The selected inputs and 

outputs reflect both operational effort and service outcomes, enabling a balanced efficiency evaluation.  

We consider the data of 20 bank branches with three inputs and eight outputs, in the following table: 

 max  {
u

v
,    

5u

2v
,    

6u

4v
,    

2u

3v
 },

s. t.    u − v ≤ 0,    5u − 2v ≤ 0,    
    6u − 4v ≤ 0,    2u − 3v ≤ 0,
    u + v = 1,
    u ≥ 0, v ≥ 0.

 (10) 

max { 
5

7
u −

2

7
v,

50

7
u −

20

7
v,

120

7
u −

48

7
v,

30

7
u −

12

7
v},

s. t.    u − v ≤ 0,    5u − 2v ≤ 0,    
    6u − 4v ≤ 0,    2u − 3v ≤ 0,
    u + v = 1,
    u ≥ 0, v ≥ 0.

 (11) 

   u  v  𝐬𝟏   𝐬𝟐  𝐬𝟑  𝐬𝟒  RHS 

s1  0  0  1  −
2

7
  0 0 3

7
 

u  1  0  0  1

7
  0  0  2

7
 

s3  0  0  0 −
10

7
  1  4 8

7
  

s4  0 0  0  −
5

7
  0  1 11

7
  

v  0  1  0  −
1

7
  0  0  5

7
  

z1 − c1  0  0  0  1

7
 0  0 0  

z2 − c2  0 0  0  10

7
  0  0 0  

z3 − c3  0 0  0  24

7
  0  0  0 

z4 − c4  0 0  0  6

7
  0  0  0 
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  Table 4. Inputs and outputs of bank branches.  

 

 

 

 

 

 

 

The input and output data of this study are given in Tables 5 and 6. 

Table 5. Inputs of bank branches. 

 

 

 

 

 

 

 

 

 

 

 

  

  

Table 6. Outputs of bank branches.  

 

 

 

 

 

 

 

 

 

Input  Output 

1. Interest paid   1. Interest-free saving account  

2. Personnel   2. Current account  

3. Demand   3. Short-term  

  4. long-term  

  5. Other  

  6. Loans  

  7. Interest received  

  8. Banking fees  

DMUs   𝐈𝟏   𝐈𝟐   𝐈𝟑  

1   12963.87   37.75   134529  

2   1483.69  22.74   10244  

3   11756.02   25.5   42668  

4   866.86   20.94   44128  

5   4545.92  14.43   13043  

6   9139.03   18.86   87981  

7   308.67  25.66   97763  

8   3185.7   26.27   7629  

9   832.02   21.91   430513  

10   11589.09   16.75   7859  

11   2886.74   21.2   1192  

12   3880.46   23.67   53209  

13   6269.71   21.85   27506  

14   2616.9   21.56   17988  

15   2600.23   37.5   50229  

16   4257   24.5   32618  

17   6179.39   25.72   41817 

18   528.92   16.28   22262  

19   3679.91   28.76   16795 

20   916.42   30.4   30326  

DMUs   𝐎𝟏   𝐎𝟐   𝐎𝟑   𝐎𝟒   𝐎𝟓   𝐎𝟔   𝐎𝟕  𝐎𝟖  

1   709874   2610439   172126   342833   228993   2761590   59161.51   9589.48  

2   73560   317617   2326  26234   85324   252120   3504.68   180.38  

3   435248   489666   6506  79194   824241  2043899   5817.55   760.9  

4   29165   971640  1559   46160  354722   452931   622.48   244.75  

5   216148   158130   845  90278   12256   552673   49570.82   20.7  

6   514881   508735   103257   69604   396716   1751591   34115.58   1234.52  

7   15676   172947   822   7373   287183   537567   1119.32   143.02  

8   155799   269617   5451   83400   71509   1534505   10163.75   1868.82  

9   13707   163397   5759   86775   135464   4829312   13520.68   1024.48  

10   666679  242971   2319   5148  16992   2949072   21773.84   22.1  

11   106682   408506   2439  173299   20643   1808353   2434.86   1193.46  

12   190455   174657  9402   110027   69802   510656  2594.17  531.59  
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Table 6. Continued. 

 

 

 

 

 

 

 

We consider Model (8) for the data of Tables 5 and 6, which (U̅, V̅) is the optimal solution obtained form 

evaluating DMU1 by Model (4). Therefore, We put the optimal value of Models (8) and (10) in the Table 7. 

Table 7. The efficiency of CSW model and ranking.  

 

 

 

 

 

The table presents five efficient DMUs evaluated using a CSW and ranked based on their efficiency scores. 

Among them, DMU19 stands out with the highest efficiency value of 3.378, securing rank 1, while DMU_5, 

with a score of 1.125, holds rank 5, the lowest among the efficient group. This variation reveals that even 

within the set of efficient DMUs, there are significant differences in how effectively each unit utilizes its 

resources to generate outputs. 

The CSW values provide insight into which outputs or inputs are most influential in determining the efficiency 

of each DMU under a unified evaluation framework. For example, DMU1 places negligible weight on u1 and 

u2 (0.000100), while u3 receives a substantially higher weight (0.058890), indicating its dominant contribution 

to efficiency. In contrast, DMU_9 focuses entirely on outputs u₇ and u₈, reflecting a narrow but impactful 

performance profile. These patterns emphasize how different DMUs may rely on distinct strengths or services 

to achieve efficiency. 

From a managerial perspective, these findings are highly informative. For instance, DMU_{11} ranks third, 

with a very high weight on v1 (0.924065), suggesting that the first input is crucial to its operational success. 

Identifying such key factors helps managers understand what drives performance and where to direct 

improvement efforts. Furthermore, the application of CSW ensures consistency and fairness in comparison 

across units, enabling better benchmarking, resource allocation, and strategic planning within the 

organization. 

8|Conclusion  

Finding a gradient hyperplane that forms the efficient frontier TvT_vTv is of significant importance in DEA. 

By solving the multiplier model, one can obtain such hyperplanes onto which DMUs are projected. However, 

identifying a common hyperplane with a shared gradient for all DMUs provides a more consistent and 

insightful evaluation framework. In conventional DEA, evaluating nnn DMUs requires solving nnn separate 

linear programming problems. In contrast, this paper proposes a unified approach in which all DMUs are 

evaluated simultaneously by solving a MOLP model. This can be done using either the MSM or the weighted 

DMUs   𝐎𝟏   𝐎𝟐   𝐎𝟑   𝐎𝟒   𝐎𝟓   𝐎𝟔   𝐎𝟕  𝐎𝟖  

13   337298   293580   12340   148121  24997   768622   1946.46   94.83  

14   133062   131262   15723   68920   150625  422274   422.05   461.59 

15   152552   189936  11778  41074   420668   729915   2269.94   376.75  

16   245412   106089   3651   12176   118734   448984   1200.53   102.69  

17   392104   646367   6241   30690   375109   2144785   10428.37   295.05  

18   27880   196292  2034   6021   6122   28007   365.28  144.75  

19   204028   502730   3511   38927   1100502   1977217   8529.12   731.69  

20   52156   71458   12850   14869   15344   277254   2761.24   162.163 

Efficient DMUs  Ranking Value Rank  Common Set of Weights  

DMU1  1.16  4  u1 = 0.000100, u2 = 0.000100, u3 = 0.058890  

DMU5  1.125 5  u4 = 0.000100, u5 = 0.001235, u6 = 0.001685  

DMU9  2.257  2  u7 = 0.000100, u8 = 0.000100 

DMU11  1.306  3  v1 = 0.924065, v2 = 0.000100, v3 = 0.013525  

DMU19  3.378 1    
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  sum approach. Evaluating all units under the same conditions using the proposed MOLP enhances 

comparability, and ranking efficient units based on the CSW yields more realistic and fair assessments. 
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