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1|Introduction    

Data Envelopment Analysis (DEA) is a well-established non-parametric approach used to evaluate the relative 

efficiency of Decision-Making Units (DMUs) across various fields, including medicine, economics, and 

management. The four cited references are among the most foundational and widely cited works in the field 

of DEA and have played a significant role in the theoretical and practical development of this method. The 

classic paper by Charnes et al. [1] first introduced the CCR model, which, under the assumption of constant 
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Abstract 

This study presents a combined approach using a modified Slacks-Based Measure (SBM) and a Decision Tree 

algorithm to identify target patients within breast cancer data. Traditional Data Envelopment Analysis (DEA) models 

often classify multiple patients as equally efficient, which limits the ability to distinguish between them. By modifying 

the SBM model to better handle input and output slacks, we aim to capture more accurate efficiency levels. We apply 

this method to the Scikit-learn breast cancer dataset, treating each patient as a Decision-Making Unit (DMU). The 

Decision Tree algorithm is used to identify the most significant features influencing efficiency. These key features are 

assigned higher weights in the SBM model to refine the analysis. The results allow for the identification of biologically 

significant target patients who demonstrate distinct efficiency profiles. This approach offers a useful tool for 

discovering hidden patterns in medical data and supports data-driven decision-making in cancer diagnosis and 

treatment planning.  
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  returns to scale, formally established DEA. Subsequently, Banker et al. [2] developed the BCC model, which 

considers Variable Returns to Scale (VRS) and helps more precisely analyze technical and scale inefficiencies. 

Later, Tone [3] enriched DEA by introducing the Slacks-Based Measure (SBM) model, which focuses on 

input and output slacks and presents a non-radial, fractional programming approach that is often more 

appropriate for real-world problems. 

Finally, Emrouznejad and Yang [4] provided a comprehensive survey of 40 years of scholarly literature in 

DEA, documenting the evolution, major application areas, and future challenges of the field, and thus offering 

a key reference for researchers. 

In most DEA models, efficient units receive a full efficiency score of one (Or 100%). However, in practice, 

multiple DMUs often achieve this "efficient status" simultaneously, making the discrimination among fully 

efficient units-known as the super-efficiency problem-a critical topic of research [5]. To address this, Tone 

[5] introduced the SBM, which evaluates efficiency by directly considering the slacks in inputs and outputs, 

unlike traditional radial models such as the Andersen and Petersen [6] method that overlook these slack 

variables. 

Inspired by this foundation, the present study aims to apply a modified SBM model to assess the biological 

efficiency of patients using the breast cancer dataset provided in the Scikit-learn library. Rather than focusing 

solely on classification tasks, this research adopts a structural perspective to explore patterns of efficiency and 

inefficiency at the cellular level. 

First, the original SBM model will be thoroughly introduced and its underlying logic explained. Next, the 

numerical and biological characteristics of the breast cancer dataset will be examined to prepare the 

groundwork for modeling. Subsequently, a modified SBM model will be implemented, allowing for more 

precise identification of inefficiencies and performance across individual patients based on their cellular 

features. 

In the final stage, suitable input and output variables will be defined, and patients will be treated as DMUs 

for conducting a biological pattern recognition analysis based on the output of the modified SBM model. 

Additionally, to enhance the precision of the analysis and emphasize the most influential features, a Decision 

Tree algorithm will be used. 

This algorithm will help identify which cellular attributes play the most significant roles in determining 

efficiency and will allow those features to be weighted more heavily within the SBM model, thus impacting 

the overall benchmarking and pattern recognition results. 

This innovative integration of the SBM model, breast cancer biomedical data, and machine learning 

techniques provides a new framework for evaluating biological performance and ultimately leads to the 

identification of reference patients and more effective treatment pathways. 

2|Overview of Data Envelopment Analysis, Slacks-Based Measure, 

and Breast Cancer Data 

The SBM model, which forms the core of our efficiency analysis, is presented in Section 1. Section 2 

introduces and explains the breast cancer dataset used in this study. Together, these sections provide the 

methodological and data foundation for the proposed target identification framework. Efficiency modeling 

presented later in the paper. 

2.1|The Slacks-Based Measure Model 

The SBM model represents one of the most advanced developments within the framework of DEA, designed 

to overcome the limitations of classical models such as CCR and BCC [7]. Traditional DEA models operate 

on a radial approach, assessing inefficiency through proportional reductions in inputs or expansions in 

outputs. However, in practice, many DMUs exhibit non-radial inefficiencies, which manifest as slacks-
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excesses in inputs or shortfalls in outputs. The SBM model explicitly incorporates these slacks into its 

efficiency measurement, thereby providing a more accurate and comprehensive assessment. 

A key feature of the SBM model is its direct inclusion of input and output slacks in the objective function. 

This enables the model to account for all deviations from the efficient frontier. In contrast, classical DEA 

models may erroneously classify a unit as efficient if its radial efficiency score is close to one, even when 

significant slacks exist in some inputs or outputs. 

The SBM model rectifies this by integrating all forms of inefficiency into the final efficiency score, thus 

preventing the overestimation of performance. From a mathematical standpoint, the objective function of 

SBM is constructed to minimize a fraction composed of the normalized sum of input and output slacks. The 

model can be defined in input-oriented, output-oriented, or non-oriented forms, offering flexibility in its 

application. 

Furthermore, SBM is not restricted to relative comparisons; it can also uncover behavioral patterns in data, 

particularly in environments where performance is affected by structural or operational constraints. 

The application of the SBM model is particularly prominent in fields such as healthcare, finance, education, 

and industry. For example, in analyzing patient data, SBM can evaluate which patients, given specific 

biological characteristics, achieve better treatment outcomes. This capability allows healthcare professionals 

and decision-makers to optimize treatment paths and allocate medical resources more efficiently. 

In addition, SBM provides efficiency scores less than or equal to one, facilitating a more precise ranking of 

DMUs. Unlike some DEA models that simply differentiate between efficient and inefficient units, SBM 

quantifies the degree of inefficiency. This nuanced assessment enables more targeted goal-setting and the 

development of effective improvement strategies for underperforming units. 

In hybrid analytical approaches, SBM is frequently used to generate efficiency labels that serve as input for 

machine learning models such as decision trees, neural networks, or clustering algorithms. This integration of 

DEA and machine learning enables the discovery of hidden patterns within complex and multidimensional 

datasets, opening new avenues in data-driven decision support systems. 

Another important aspect of SBM is its robustness in handling noisy data and variables with differing scales, 

due to its non-radial and non-oriented nature. Empirical studies have demonstrated that SBM is less sensitive 

to outliers compared to other DEA models, offering greater reliability in real-world data analysis. This 

robustness has made SBM a preferred model among researchers for empirical efficiency studies. 

In summary, the SBM model is not only a tool for accurately assessing the relative efficiency of units, but also 

a foundation for deeper analysis of inefficiencies, the identification of optimal performance patterns, and the 

design of improvement policies. These features have established SBM as a core element in the development 

of efficiency and productivity analysis frameworks across diverse scientific disciplines. 

The SBM model, proposed by Tone [5], evaluates the efficiency of a DMU by directly incorporating input 

and output slacks into the efficiency score. The basic SBM model under VRS is formulated as follows: 

Min (1 − (1/m)
T

𝐗𝐨
) . (1 + (1/s)
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2.2|The Breast Cancer Dataset 

The breast cancer dataset is one of the most well-known and widely used datasets in the fields of machine 

learning and data science, available through the Scikit-learn library [8]. Originally derived from the Wisconsin 

Diagnostic Breast Cancer (WDBC) database, this dataset contains clinical and microscopic imaging data from 

breast tissue samples. The primary aim of the dataset is to distinguish between benign and malignant tumors 

by analyzing cellular features. 

The features extracted from this dataset are based on digital imaging of cell nuclei obtained from biopsy 

samples. For each case, thirty numerical features are calculated, describing various physical properties of the 

cell nuclei such as radius, texture, perimeter, area, smoothness, concavity, concave points, symmetry, and 

fractal dimension. 

These features are derived from different statistical aspects namely the mean, standard error, and "worst" 

(Largest) values-offering a comprehensive representation of tumor morphology. One of the strengths of this 

dataset is the relatively balanced proportion of benign and malignant cases, making it especially suitable for 

binary classification tasks. 

The dataset contains 569 instances with 30 standardized numerical features, and each sample is labeled as 

either benign or malignant. This simple yet powerful structure makes the dataset ideal for developing machine 

learning models, statistical analysis, and even more advanced techniques such as DEA. 

From a medical standpoint, the use of this dataset can contribute to the development of decision-support 

systems for physicians. Models trained on this data can analyze cellular features and predict malignancy with 

high accuracy. Such models not only accelerate the diagnostic process but also reduce the risk of misdiagnosis 

and support more informed clinical decisions. 

In the context of DEA, the breast cancer dataset provides a unique opportunity to evaluate the performance 

efficiency of patients from a biological perspective. Each patient can be treated as a DMU, where the cellular 

characteristics act as inputs and outputs in DEA models such as the SBM. This enables researchers to identify 

efficient and inefficient patients and derive insights that could lead to more effective treatment strategies. 

Due to its numeric structure and absence of missing values, the dataset is highly suitable for various types of 

statistical and supervised or unsupervised learning analyses.  

The features also exhibit significant internal correlations, which, while posing challenges such as 

multicollinearity, create opportunities for deeper analytical methods like dimensionality reduction, feature 

selection, and clustering. 

The breast cancer dataset has been extensively used in academic research and machine learning competitions 

such as those on Kaggle, serving as a benchmark for evaluating model performance. High accuracy has been 

reported with models such as Support Vector Machines (SVMs), random forests, and neural networks. 

However, combining this dataset with decision-making methodologies such as DEA or AHP enables 

interdisciplinary analyses that go beyond what machine learning alone can achieve. 

 Ultimately, the breast cancer dataset from Scikit-learn is not only a classical and educational resource but also 

a powerful foundation for testing research hypotheses, developing intelligent diagnostic systems, and 

designing novel analytical approaches at the intersection of data science and medicine. A thorough analysis 

of this dataset can reveal new insights into cellular patterns, disease progression, and optimization of breast 

cancer treatment strategies. 

∑ λj = 1
n

j=1
,  

 λj ≥ 0, for all j.  
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2.3|Problem Statement 

In recent years, significant advancements have been made in the field of machine learning and medical data 

analysis. However, most existing methods primarily focus on classification or prediction, overlooking more 

structural approaches such as the assessment of individual biological efficiency. Although the breast cancer 

dataset has been widely applied in classification models, it also offers potential for a novel analytical 

perspective-provided that a suitable and robust framework is adopted to capture the underlying inefficiencies 

within the data. 

Classical DEA models, such as CCR and BCC, often fail to handle complex biological data effectively due to 

their simplifying assumptions and inability to account for non-radial inefficiencies. To address these 

limitations, the SBM was introduced as a more advanced, non-radial model capable of capturing inefficiencies 

resulting from input excesses or output shortfalls. 

Nevertheless, even the standard SBM model may fall short when applied to high-variability medical datasets, 

such as those in oncology. This has led to the development of modified SBM models, which offer greater 

flexibility and precision in modeling real-world inefficiencies. 

Given the numerical structure and correlated features of the breast cancer dataset, the use of a modified SBM 

model provides an innovative solution for evaluating the biological efficiency of each patient-beyond the 

conventional binary classification into benign or malignant cases.  

This approach enables the identification of efficient and inefficient patients and helps uncover influential 

patterns among cellular features. As a result, the analysis shifts from mere prediction to biological 

benchmarking, offering new avenues for clinical insight and optimized decision-making. 

2.4|Research Contribution 

This study employs a modified SBM model to evaluate the biological performance of patients in the Scikit-

learn breast cancer dataset and presents contributions across three main dimensions: 

I. First, it introduces a novel framework by modeling patients as DMUs, using cellular features as inputs and 

outputs within the DEA structure-bridging medical data with efficiency analysis. 

II. Second, the use of a modified SBM enables the direct and accurate detection of non-radial inefficiencies that 

are often overlooked in traditional DEA models. 

III. Third, by analyzing the efficiency scores, the study identifies reference patients and benchmarks, allowing 

for biological pattern recognition and the suggestion of optimal treatment pathways. 

This research creates an interdisciplinary link between data science, operations research, and medicine, and 

demonstrates the untapped potential of DEA in clinical data analysis. 

3|Methodology 

To effectively evaluate patient efficiency in breast cancer diagnostics, this study integrates machine learning 

with operational research techniques. Initially, a Decision Tree algorithm is employed to identify the most 

significant clinical features. These findings then inform the development of a modified SBM model under the 

VRS assumption, enabling more accurate and interpretable efficiency analysis. 

3.1|Feature Selection Using Decision Tree on Breast Cancer Data 

Understanding which features are most influential in distinguishing between benign and malignant tumors is 

crucial in any predictive or analytical study in oncology. Machine learning algorithms offer powerful tools to 

uncover such patterns in data. Among them, Decision Tree algorithms stand out due to their interpretability 

and ability to rank features based on their discriminative power [9], [10]. 
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  In this study, we utilize the breast cancer dataset provided by Scikit-learn, which includes 30 numerical 

features derived from digitized images of breast mass cell nuclei. Each observation corresponds to a patient, 

and the output label indicates whether the tumor is benign or malignant. These features represent metrics 

such as radius, texture, smoothness, compactness, and symmetry of the cell nuclei. 

We begin by applying a standard Decision Tree classifier to this dataset. The tree is trained using the full set 

of features and the binary class label as the target variable. During training, the algorithm identifies the features 

that offer the highest information gain i.e., those that most effectively split the data into homogenous 

subgroups with respect to the target label. 

The trained decision tree is then analyzed to extract the most important features. These are typically found 

near the root of the tree, where decisions have the most impact on overall classification. Features such as 

"worst radius," "mean concavity," and "worst perimeter" often emerge as highly significant in classifying the 

data correctly. 

One major advantage of the Decision Tree algorithm is that it inherently handles non-linear relationships and 

interactions among features. This is especially important in medical data, where the relevance of a feature 

might not be linear or independent of others.  

Hence, this technique not only ranks features but also captures complex interdependencies. After identifying 

the key features, we normalize and rank them to assign importance weights. These weights will be used later 

to modify the traditional SBM model, ensuring that more informative variables receive higher consideration 

during efficiency evaluation. 

This process of feature selection serves as a data-driven basis for prioritization in the efficiency model. Rather 

than relying on expert-driven or subjective feature importance, the Decision Tree offers an objective measure 

based on actual performance in classification. The interpretability of decision trees also allows clinicians or 

healthcare analysts to validate and understand which variables drive the classification process, fostering trust 

in the analysis. This transparency is often lacking in more complex or black-box models such as neural 

networks. 

Overall, this initial stage not only reduces dimensionality and computational complexity for the DEA model 

but also strengthens its clinical relevance by grounding the analysis in medically significant variables. 

This integrated feature selection step represents a critical methodological bridge between machine learning 

and operational research, paving the way for the development of a robust, targeted, and interpretable 

efficiency evaluation model. 

3.2|Modified Slacks-Based Measure Model under Variable Returns to Scale 

The SBM model is a non-radial, non-oriented DEA model that evaluates the efficiency of DMUs by explicitly 

accounting for input excesses (Slacks) and output shortfalls. It was originally introduced by Tone [5] and has 

since become a valuable tool in performance measurement, particularly in healthcare settings. 

 In traditional DEA models, all features are treated equally unless otherwise specified. However, in domains 

such as medical diagnostics, not all variables have the same clinical relevance. Incorporating this variation in 

importance is crucial to avoid biased or misleading efficiency results. 

To address this, we propose a modified SBM model that integrates feature importance scores derived from 

the Decision Tree analysis into the efficiency evaluation. The key idea is to assign weights to each input feature 

proportional to its predictive power in classifying tumor type. This allows the model to focus more on 

clinically significant variables. Our model operates under the VRS assumption. 

This assumption is more realistic in healthcare and medical contexts where scale efficiency is not constant 

across all units (i.e., patients). Under VRS, the production possibility set is convex but not necessarily 

proportionate, allowing for more flexibility in benchmarking. 
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Mathematically, we adapt the original SBM objective function by applying feature-specific weights in the 

numerator (Input slacks) and optionally in the denominator (Output slacks if outputs are included). This 

results in a weighted slack-based efficiency score that better reflects the relative importance of each variable. 

Each patient is modeled as a DMU, with the selected features as inputs and an optional output such as 

diagnostic accuracy, risk index, or survival proxy. The model computes the efficiency of each DMU by 

measuring its distance from the efficient frontier formed by the best-performing patients, excluding itself. 

The efficiency score ranges from 0 to 1, with values closer to 1 indicating higher efficiency. Inefficient patients 

are those with excessive inputs (i.e., poor clinical indicators) relative to the best-performing peers with similar 

characteristics. This modified SBM model is particularly useful for identifying target patients-those who are 

consistently efficient and can serve as references for treatment planning or further investigation. 

Conversely, inefficient patients may be candidates for special care or clinical review. By combining machine 

learning with DEA, we create a hybrid model that benefits from both data-driven feature discovery and 

mathematically rigorous efficiency evaluation. This enhances not only the accuracy but also the practical 

interpretability of the results. The integration of VRS in the model further improves its adaptability to real-

world clinical data, where patient heterogeneity and differences in biological profiles are common and must 

be acknowledged.  

In summary, the modified SBM model under VRS, guided by Decision Tree-based feature weighting, provides 

a comprehensive and meaningful framework for assessing efficiency and discovering target patterns in breast 

cancer data. In the proposed modified SBM model, the weights assigned to inputs (v) and outputs (u) are not 

treated as equal or arbitrary. Instead, they are determined based on the feature importance scores obtained 

from a decision tree algorithm.  

The decision tree is first applied to the breast cancer dataset to identify the most influential features in 

distinguishing between benign and malignant tumors. These relative importance values are then used to assign 

weights in the objective function of the SBM model. In this way, statistical insights and classification structure 

from the decision tree are directly integrated into the DEA framework. 

The modified SBM model, using these importance-based weights, enables a more accurate and targeted 

evaluation of DMUs. The objective is to minimize the weighted sum of input and output slacks, with the 

modification that each variable's contribution is scaled according to its significance in cancer classification as 

determined by the decision tree.  

This approach enhances the scientific validity of the model and improves the quality of pattern recognition, 

since inputs and outputs with greater diagnostic relevance receive higher emphasis in the efficiency 

assessment. The complete formulation of the modified model is presented in the  

following.      

Min (1 − (1/m)
VT

Xo
) . (1 + (1/s)

US

Yo
)

−1
,  

s. t.  

∑ λjXj + T = Xo, 
n

j=1
  

∑ λjYj − S = Yo, 
n

j=1
  

∑ λj = 1
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j=1
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 λj ≥ 0, for all j.  
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  In the above model, V and U are vectors that represent the priorities in the objective function, particularly 

with respect to the input and output slack variables. 

4|The Breast Cancer Wisconsin Dataset  

The breast cancer Wisconsin dataset comprises information on 569 samples from female patients, with each 

sample described by 30 numerical features. These features represent geometric and statistical characteristics 

of cell nuclei obtained through digital imaging techniques of fine needle aspirates. Additionally, each sample 

is labeled to indicate whether the tumor is benign or malignant. 

An initial analysis shows that out of the 569 available samples, 357 belong to the benign class and 212 to the 

malignant class. This proportion indicates a relatively balanced dataset, though the imbalance may still 

influence the performance of classification models. Statistically, this distribution suggests that malignant cases 

account for approximately 37% of the samples.  

The overall mean of the "mean radius" feature across the dataset is approximately 14.13, with a range spanning 

from about 6 to over 28. This indicates a wide variation in tumor size, suggesting that size is potentially a key 

factor in determining malignancy. The standard deviation of this feature is 3.52, reflecting a moderate level 

of dispersion within the data. 

The "mean area" feature has the highest average value among all features, with a mean of approximately 

654.89. Its standard deviation is also quite high (351.9), indicating significant variability in cell area among the 

samples. This feature is likely to be a strong discriminator between benign and malignant tumors.  

Among the features related to texture, the “mean texture” has an average of 19.3 and a standard deviation of 

4.30. Compared to other features, this is relatively low, possibly indicating a lesser role in classification; 

however, further analysis using machine learning models is needed to confirm this assumption. 

When data is analyzed by class, it is observed that the average radius of malignant tumors is significantly larger 

than that of benign ones. Specifically, the average radius for malignant samples is approximately 17.5, whereas 

for benign samples it is around 12.1. This statistically significant difference highlights the importance of this 

feature in cancer classification models. 

Other features, such as “compactness” and “concavity,” also show higher mean values in malignant tumors 

than in benign ones. For example, the average compactness in malignant tumors is around 0.16, compared to 

0.08 in benign tumors. These patterns suggest that malignant tumors are not only larger but also have more 

complex geometric structures. 

Conversely, some features such as “symmetry” and “fractal dimension” show little difference between the 

two classes. For instance, the average symmetry values are quite similar for both benign and malignant 

samples. Such features might have limited impact in classification and are often excluded in feature selection 

processes. 

Furthermore, the statistical analysis indicates that certain features are highly correlated, such as mean radius, 

mean area, and mean perimeter. These correlations can be useful in identifying clusters of related features and 

in reducing redundancy. Techniques like dimensionality reduction or selecting uncorrelated features can 

improve model efficiency. 

Overall, the initial statistical analysis of the breast cancer dataset provides a strong foundation for further 

machine learning applications and efficiency assessment models like the SBM. In subsequent stages, this 

information can guide the selection of relevant features and enhance the design of predictive models and 

efficient target identification. 

 



 Fanati Rashidi and Olfati  |Int. J. Oper. Res. Artif. Intell.1(1) (2025) 29-39 

 

37

 

  

 

Fig. 1. illustrates the pairwise scatterplots and density distributions for 

three key features in the breast cancer dataset. 

Fig. 1 illustrates the pairwise scatterplots and density distributions for three key features in the breast cancer 

dataset: mean radius, mean texture, and mean perimeter. Each point in the scatterplots represents a single 

patient record, color-coded by tumor type-red for malignant and blue for benign. The diagonal of the matrix 

displays the Kernel Density Estimates (KDE) of each individual feature, separated by class. 

In the scatterplot between mean radius and mean perimeter, a strong positive correlation is observed, 

particularly among malignant cases. Malignant tumors tend to exhibit larger values for both features, 

clustering in the upper-right quadrant of the plot. Conversely, benign tumors are concentrated in the lower-

left region, indicating that smaller radius and perimeter values are typically associated with non-cancerous 

cases. This separation suggests that these two features are highly discriminative and effective for classifying 

tumor malignancy. 

The plot comparing mean radius and mean texture also displays class-specific patterns. While the distinction 

is not as sharp as in the previous plot, there is a general trend showing malignant tumors with higher radius 

and texture values. This confirms the complementary role of texture in supporting classification, especially 

when used alongside size-related features such as radius. 

The scatterplot between mean perimeter and mean texture reveals a similar pattern. Although some overlap 

exists between the two classes, malignant tumors generally occupy areas with larger perimeter and moderate-

to-high texture values. Benign tumors again show lower values across both dimensions. This indicates that 

perimeter and texture, while individually less decisive than radius, contribute valuable information when 

analyzed together. 

The KDE plots along the diagonal further reinforces these findings. In each case, malignant and benign 

tumors show clearly distinct density peaks. Malignant cases tend to skew toward higher values, while benign 

cases cluster around lower ranges. These density plots support the hypothesis that the selected features are 

statistically separable and thus suitable for downstream analysis using decision trees and DEA models. 
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  Overall, Fig. 1 provides a strong visual confirmation of the discriminative power of the selected features. Their 

integration into classification and efficiency assessment models such as a modified SBM is therefore justified 

both statistically and clinically. 

The numerical efficiency scores obtained from the modified SBM model reveal significant insights into the 

relative performance of the DMUs under evaluation. Out of 446 DMUs, 98 units (Approximately 21.97%) 

achieved a full efficiency score of 1.000, indicating that these units are operating on the efficiency frontier 

without any input excesses or output shortfalls.  

These efficient units can be considered as benchmarks or role models for the remaining DMUs. The 

remaining 348 DMUs (About 78.03%) are inefficient to varying degrees. The lowest recorded efficiency score 

is 0.6351, and a notable number of DMUs have scores falling between 0.65 and 0.85, indicating considerable 

room for improvement in resource utilization or output generation. This distribution suggests a relatively 

wide performance gap across the dataset. 

The majority of DMUs fall in the moderate efficiency range (0.70–0.90), highlighting systemic inefficiencies 

which might stem from operational practices, resource allocation, or external constraints. It is also important 

to note that even among the inefficient units, many exhibit scores close to the efficiency frontier (e.g., above 

0.90), suggesting that minor improvements could render them efficient.  

The findings underscore the practical utility of the modified SBM model in not only distinguishing efficient 

and inefficient units but also in identifying specific improvement potentials. Given that the model accounts 

for both input excesses and output shortfalls, the results reflect a nuanced and realistic measure of efficiency 

that is highly relevant for performance optimization and strategic planning in complex operational settings. 

5|Conclusion 

This study introduces a novel integrative approach that combines a modified SBM with a Decision Tree 

algorithm to enhance the analysis of breast cancer data. By treating individual patients as DMUs, we were 

able to assess their relative efficiency based on critical clinical features, while also addressing the limitations 

of traditional DEA models that often fail to differentiate between equally efficient units. 

The Decision Tree algorithm played a crucial role in identifying the most discriminative features-such as mean 

radius, mean texture, and mean perimeter-which were subsequently emphasized in the SBM model to improve 

the sensitivity of efficiency analysis. Visual inspection through scatterplots and KDE distributions confirmed 

the strong correlation between these features and tumor type, thus validating their clinical relevance and 

statistical separability. 

The Modified SBM model, equipped with these key feature weights, successfully categorized patients into 

efficient and inefficient groups. Approximately 22% of the DMUs were found to be fully efficient, serving as 

performance benchmarks, while the remaining 78% displayed varying degrees of inefficiency. This 

stratification offers valuable insights into performance disparities and highlights potential areas for clinical or 

operational improvement. 

Importantly, the combined method offers not just classification but also interpretation-enabling the 

identification of biologically significant "target" patients who exhibit distinct efficiency profiles. These profiles 

can aid in personalized treatment planning, resource allocation, and early intervention strategies. In 

conclusion, the integration of modified SBM and Decision Tree algorithms provides a powerful, data-driven 

framework for uncovering latent patterns in medical datasets. This hybrid model holds promise for broader 

applications in healthcare analytics, particularly in enhancing diagnostic precision and supporting evidence-

based decision-making in cancer care. 
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