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1|Introduction    

Efficiency and productivity are critical factors in enhancing the performance and service quality within the 

banking sector. Each bank branch, as an independent decision-making unit, is influenced by a variety of 

financial, operational, and cost-related factors that determine its effectiveness and overall efficiency. 

Accurately measuring efficiency and forecasting the future performance of bank branches is essential for 

managers and policymakers to improve resource allocation and optimize service delivery. 

One of the widely used methods for efficiency assessment is Data Envelopment Analysis (DEA), a non-

parametric approach that evaluates the relative efficiency of Decision-Making Units (DMUs) based on their 

inputs and outputs. DEA not only provides an efficiency score but also facilitates the identification of super-
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Abstract 

This study focuses on predicting the super-efficiency scores of commercial bank branches by employing various 

regression models. The analysis is conducted on a dataset comprising 375 bank branches from the fiscal year 2017, 

utilizing a range of financial, operational, and cost-related indicators as input features. A suite of regression 

techniques, including linear regression, ensemble methods such as Random Forest and XGBoost, as well as neural 

network models, is implemented to estimate the super-efficiency values. Model performance is assessed through 

metrics including Mean Absolute Error (MAE) and the coefficient of determination (R²). The findings reveal that 

non-linear models, especially ensemble-based algorithms, outperform linear models in terms of accuracy and 

generalizability. This regression framework offers a robust decision-support tool for evaluating and benchmarking 

the operational efficiency of bank branches. 
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  efficiency, which highlights branches performing beyond the conventional efficiency frontier. In this study, 

super-efficiency scores for bank branches were initially calculated using DEA and used as the target labels for 

subsequent regression modeling. 

With recent advances in Machine Learning (ML), regression models have gained prominence in predicting 

performance indices within banking. These models are capable of capturing complex and nonlinear 

relationships between various financial and operational features of bank branches and their super-efficiency 

scores. The accuracy and generalizability of these predictive models depend heavily on the rigorous 

preprocessing of data, including normalization and partitioning into training, validation, and test subsets. 

These preprocessing steps ensure model robustness and reduce overfitting. 

Furthermore, selecting appropriate optimization functions during the training of regression models plays a 

pivotal role in improving convergence rates and overall prediction accuracy. This research investigates 

multiple regression models, including linear regression, ridge regression, random forest, XGBoost, and 

Multilayer Perceptron (MLP) neural networks, to develop a comprehensive framework for predicting bank 

branch super-efficiency. 

The primary goal of this study is to establish an effective and accurate regression-based approach for 

forecasting super-efficiency scores, which can serve as a valuable decision-support tool for bank branch 

performance evaluation and management. This study seeks to integrate DEA techniques with ML models to 

predict the super-efficiency scores of commercial bank branches. While traditional methods such as DEA are 

widely used for measuring the relative efficiency of DMU—particularly in the financial sector—the increasing 

complexity and nonlinearity of modern datasets necessitate the adoption of more advanced approaches like 

ML. By employing sophisticated regression models such as Random Forest, XGBoost, MLP, and a stacking 

ensemble, the study demonstrates a significant improvement in prediction accuracy compared to basic linear 

models. This innovative approach can serve as a decision-support tool for bank managers in assessing branch 

performance and optimizing resource allocation. 

In the context of developing DEA models, the following references provide diverse foundational and 

methodological contributions. To begin with, a series of studies by Mozaffari  et al. [1] exhibit a strong focus 

on extending DEA-R (Russell) models in various dimensions, such as cost efficiency, revenue efficiency, and 

super-efficiency [2]. These works contribute not only to the theoretical and mathematical depth of DEA 

models but also introduce new frameworks—such as slacks-based models and efficient frontier analysis—

that enable more accurate performance evaluation of DMU [3]. Furthermore, the application of DEA-R 

models in real-world environments like the petrochemical industry—under fuzzy settings and with 

undesirable outputs—demonstrates the model’s flexibility in handling complex and uncertain data [4]. 

Subsequently, research conducted by Noura et al. [5] addresses key topics such as congestion in DEA and 

super-efficiency through social effectiveness, which enriches the scope of DEA beyond conventional 

efficiency metrics [6]. These studies have helped incorporate more realistic factors, such as social roles and 

resource constraints, into performance measurement frameworks. Additional contributions include the 

analysis of supply chains using Sub-DMUs in DEA [7] and the evaluation of productivity indicators in the oil 

industry through Multi-Attribute Decision-Making (MADM) approaches [8], reflecting a productive 

intersection between DEA methodology and industrial decision support. 

Finally, the integration of fuzzy logic into decision-making—particularly through the synergy of fuzzy AHP 

and fuzzy TOPSIS for ranking factors influencing employee turnover intention—shows a trend towards 

merging quantitative and behavioral perspectives in analytical models [9]. This approach enhances DEA’s role 

from a purely technical evaluation tool to a hybrid, intelligent decision-support framework suitable for 

analyzing human-centric and uncertain environments. Collectively, these references represent a coherent 

pathway from theoretical advancement to interdisciplinary applications in the field of DEA. 

The proposed hybrid methodology is inspired by foundational work on statistical frontier models [10], 

dynamic environmental indices in DEA [11], and ML techniques for dynamic inefficiency analysis [12]. 
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  Additionally, studies such as Guerrero et al. [13] and Guillen et al. [14] have shown that combining DEA with 

ML can enhance predictive capabilities and support more effective performance evaluation in organizational 

settings. Building on this body of research, the current study offers a precise, flexible, and scalable model for 

efficiency analysis in the banking industry. 

The framework of the article is as follows: 

In Section 2, various regression models, including linear regression, ridge regression, random forest, 

XGBoost, and MLP neural networks, are introduced, and their characteristics are explained. 

Section 3 details the methodology, including labeling data using DEA, data preprocessing, standardization, 

and splitting into training, validation, and test sets. The training process, hyperparameter optimization, and 

model evaluation metrics are also described. 

Section 4 presents the case study on 375 commercial bank branches, including data feature analysis, 

correlation examination, and feature variability assessment. And  finally, Section 5 provides the overall 

conclusion, emphasizing the importance of ensemble models for improving the prediction accuracy of bank 

branch super-efficiency, and offers suggestions for future research. 

2|Regression Models 

In this study, five distinct regression models were selected to predict the super-efficiency scores of bank 

branches, each chosen for its ability to capture different aspects of the relationship between input features 

and the target variable. These models encompass both linear and nonlinear approaches, allowing for a 

comprehensive exploration of potential dependencies within the data. 

Linear regression serves as the most fundamental model, assuming a linear relationship between the 

explanatory variables and the outcome. Due to its simplicity and interpretability, it is often employed as a 

baseline against which the performance of more complex models can be compared.  Ridge regression extends 

the linear regression framework by incorporating an L2 regularization term. This penalization helps to mitigate 

the risk of overfitting and addresses multicollinearity among input features, thereby improving the stability 

and generalizability of the model in high-dimensional settings. 

Random forest regression is an ensemble learning method that aggregates the predictions of multiple decision 

trees constructed on bootstrapped subsets of the data. This approach effectively models nonlinear 

interactions and variable importance while enhancing robustness against noise and outliers.  XGBoost 

Regression utilizes gradient boosting to iteratively combine weak learners, focusing sequentially on samples 

that were previously mispredicted. This method is highly efficient computationally and delivers state-of-the-

art accuracy by optimizing both the model structure and learning process. 

MLP regression, a type of feedforward artificial neural network, employs multiple layers of interconnected 

neurons to capture complex nonlinear relationships in the data. Through backpropagation and weight 

adjustment, MLP models can learn intricate patterns that traditional regression methods might overlook. 

Collectively, these models provide a spectrum of analytical capabilities, facilitating a thorough evaluation of 

their predictive power in modeling the super-efficiency of bank branches. 

3|Methodology 

The first phase of this study involved labeling the target variable by applying DEA, a widely used non-

parametric technique for measuring relative efficiency. DEA evaluates each bank branch’s efficiency based 

on multiple input variables—including financial, operational, and cost-related indicators—and corresponding 

output performance metrics. This process yielded a super-efficiency score for each branch, representing its 

performance relative to the efficiency frontier and enabling identification of units exceeding the typical 

efficiency boundary. These super-efficiency scores were utilized as the ground truth labels for subsequent 

regression-based predictive modeling. 
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  Following the labeling step, the dataset comprised 375 bank branches, each described by 21 financial, 

operational, and cost-related features serving as explanatory variables. To prepare the data for modeling, a 

rigorous preprocessing pipeline was implemented. Initially, normalization was conducted using 

standardization to adjust all input features to a common scale with zero mean and unit variance. This step 

mitigated the impact of differing units and value ranges across features, ensuring equitable contribution to 

the model training. Next, the dataset was partitioned into training, validation, and testing subsets with 

proportions of 60%, 20%, and 20%, respectively. This data splitting strategy was designed to enable robust 

model training, hyperparameter tuning, and unbiased evaluation, thereby enhancing the generalizability and 

preventing overfitting of the predictive models. 

The modeling phase involved implementing five distinct regression algorithms selected to capture diverse 

linear and nonlinear dependencies between the input features and the super-efficiency target variable. Linear 

Regression was employed as a baseline model to represent linear relationships. Ridge regression introduced 

L2 regularization to manage multicollinearity and reduce overfitting. Random Forest regressor, an ensemble 

technique aggregating multiple decision trees, was utilized to model complex nonlinear interactions and 

improve prediction stability. XGBoost regressor, leveraging gradient boosting methods with advanced 

optimization strategies, provided a powerful framework for accurate and efficient learning. Finally, an MLP 

neural network was applied to capture deep nonlinear patterns within the data through its multi-layered 

architecture. 

Each model was trained using appropriate optimization algorithms tailored to the model architecture, such 

as variants of stochastic gradient descent and second-order optimization methods. These optimization 

functions were crucial in ensuring efficient convergence and fine-tuning of model parameters to maximize 

predictive accuracy. 

For model evaluation, the trained algorithms were assessed on the unseen test dataset using standard 

regression metrics. Mean Absolute Error (MAE) quantified the average absolute deviation between predicted 

and actual super-efficiency scores, while the coefficient of determination (R²) measured the proportion of 

variance in the target variable explained by the model. These performance indicators facilitated 

comprehensive comparison and informed the selection of the most effective model for super-efficiency 

prediction of bank branches. 

4|Case Study: Efficiency Analysis of 375 Commercial Bank 

Branches 

The dataset comprises 375 commercial bank branches, each described by 22 numerical features related to 

financial, operational, and cost parameters. Initial examination of the dataset reveals no missing values, 

ensuring data completeness and reliability for subsequent modeling tasks.  Descriptive statistics provide insight 

into the distribution and variability of the features. For example, total_deposits ranges widely from as low as 

6.38 to over 3.2 million units, with a mean around 118,000 and a high standard deviation indicating substantial 

dispersion among branches. Similar patterns of wide variation are observed in fixed_assets, 

personnel_expenses, and gross_loans. This heterogeneity suggests the need for normalization or scaling prior 

to modeling to harmonize feature scales. 

Correlation analysis highlights strong positive relationships among many financial variables. Notably, 

total_deposits exhibits very high correlation with gross_loans (0.978), total_assets (0.970), and 

net_interest_income (0.960), reflecting the interconnected nature of banking financial indicators. conversely, 

cost-related features such as price_of_labour and price_of_funds tend to show weak or negative correlations 

with these financial indicators. 

The target variable, Eff_AP, representing super-efficiency scores, shows weak positive correlations (Less than 

0.1) with most features, implying that the prediction task may involve complex, potentially nonlinear 

interactions that cannot be captured by simple linear models alone.     
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  Table 1. Summary statistics of key bank branch variables, including mean, median, 

min, max, and standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table provides a summary of descriptive statistics for the key features of data from 375 commercial bank 

branches. For each variable, central measures such as mean and median are reported alongside minimum, 

maximum, and standard deviation values. These statistics offer a general understanding of the data 

distribution, variability, and potential outliers. 

The results indicate that certain variables, such as total deposits, gross loans, and total assets, exhibit very high 

means and standard deviations, reflecting substantial diversity in the size and performance of bank branches. 

This significant variability may arise from differences in operational scale, geographic location, and economic 

conditions among branches. 

The model's target variable, Efficiency (Eff_AP), also shows a wide range of values with a mean around 1.18 

and a standard deviation slightly above 1. This highlights significant variation in branch performance  

Boxplots and histograms (Not shown here) further confirm the presence of skewed distributions and 

potential outliers in key variables, emphasizing the importance of careful preprocessing, such as outlier 

handling and robust scaling, before applying regression models. 

In summary, the data exploration phase reveals rich and varied patterns within the dataset, providing a solid 

foundation for informed model selection and preprocessing strategies in the following phases. 

This code implements a comprehensive predictive modeling pipeline to analyze the efficiency of 375 

commercial bank branches using the target variable Eff_AP. The process begins by loading the dataset from 

an Excel file and separating input features from the target variable. The data is then split into training, 

validation, and test subsets to facilitate model training, hyperparameter tuning, and unbiased performance 

evaluation, respectively. 

For models sensitive to feature scaling, the input data is standardized, whereas the Random Forest model is 

trained on the raw, unscaled data. Five regression models—linear regression, ridge regression, Random 

Forest, XGBoost, and Multi-Layer Perceptron (MLP —are defined and trained. Hyperparameters for Ridge, 

Feature Mean Median (50%) Min Max Std Dev 

Total_deposits 118,465.9 15,456.1 6.38 3,266,469 340,842 

Fixed_assets 1,276.1 152.6 0.03 38,046.6 3,854.6 

Personnel_expenses 1,263.1 197.2 1.19 17,653.7 2,756.4 

Non_performing_loans 3,257.2 378.6 0.70 63,155.6 7,905.6 

Gross_loans 95,143.0 12,642.7 25.23 2,185,860 239,667 

Total_securities 36,835.2 3,999.2 5.72 944,889.6 109,428 

Price_of_funds 0.0603 0.0181 0.00025 6.8593 0.3698 

Price_of_capital 8.0336 2.7474 0.2662 480.7083 29.147 

Price_of_labour 0.0106 0.0091 0.0011 0.0522 0.0064 

Price_of_loans 0.1053 0.0783 0.0166 1.4559 0.1118 

Total_interest_expenses 2,767.7 281.2 0.05 52,140.2 6,977.4 

Non_interest_expenses 2,404.6 382.5 2.08 34,884.0 5,119.1 

Total_Assets 180,516.0 22,350.8 52.43 4,006,242 460,427 

Net_interest_income 3,142.5 488.1 1.45 80,227.0 8,311.9 

Other_interest_income 1,941.7 167.1 0.07 44,367.9 5,639.9 

Non_interest_income 1,629.7 191.9 0.08 25,492.0 3,591.3 

LLPGL 0.9348 0.5500 0.0100 9.4500 1.1874 

NPLGL 5.8181 2.8400 0.0500 63.4000 8.5938 

LLP 714.57 74.46 0.05 19,891.3 2,215.4 

Eff_AP (Target variable ) 1.1829 0.9394 0.3031 11.4965 1.0842 
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  Random Forest, XGBoost, and MLP models are optimized using Grid Search combined with cross-validation 

to select the best parameter configurations. 

Following training, each model’s predictions on the validation set are evaluated using MAE and the coefficient 

of determination (R²). The optimized base models are then integrated into a stacking regressor ensemble, 

where predictions from the base models, along with the original input features, are passed to a final linear 

regression meta-model for training. 

Finally, the performance of the ensemble model is assessed on both the validation and test datasets, 

demonstrating improved prediction accuracy compared to the individual base models. 

Table 2. Performance comparison of regression models 

on the validation set using MAE and R² metrics. 

 

 

 

 

 
 

The table above compares the performance of various regression models based on two key metrics: MAE 

and coefficient of determination (R²) on the validation dataset. These metrics serve as indicators of model 

prediction accuracy. 

MAE represents the average absolute difference between predicted and actual values; lower values indicate 

better accuracy. 

R² measures the proportion of variance explained by the model, ranging from 0 to 1, where values closer to 

1 denote superior model performance. 

In Table 2, Simple linear models such as linear regression and ridge regression exhibit relatively poor 

performance (High MAE and near-zero R²), indicating their limited capability to capture the complexity of 

the data. 

Tree-based models like Random Forest and boosting models such as XGBoost demonstrate significantly 

better results, with XGBoost achieving the best MAE and R² scores. 

The MLP neural network performed worse than tree-based models. 

Stacking regressor, an ensemble learning method, notably outperformed all individual models by achieving a 

substantially lower MAE and a much higher R². This highlights that combining multiple models can 

significantly enhance prediction accuracy. 

5|Conclusion 

The study results indicate that advanced regression models significantly enhance the prediction accuracy of 

super-efficiency scores compared to traditional linear methods. Among the tested models, ensemble 

approaches such as Random Forest and XGBoost demonstrated superior performance, reflected in lower 

MAE and higher R² values. Notably, the stacking regressor, which integrates multiple base models, achieved 

the best predictive accuracy, underscoring the benefits of combining diverse algorithms. 

These findings emphasize the importance of leveraging non-linear and ensemble modeling techniques in 

efficiency analysis within the banking sector. By accurately forecasting branch performance, the proposed 

approach can aid managers and decision-makers in identifying high-performing units, optimizing resource 

Model Validation MAE Validation R² 

Linear regression 0.6872 0.0079 

Ridge regression 0.6942 0.0010 

Random forest 0.4389 0.5653 

XGBoost 0.3706 0.6344 

MLP regressor 0.7107 0.0237 

Stacking regressor 0.1976 0.9370 
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  allocation, and guiding strategic improvements. Future research may explore incorporating additional data 

sources or employing advanced deep learning architectures to refine predictive capabilities further. 
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